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Abstract of Project: 
 Chess has long been one of the most scrutinized, perplexing, and purely logical 
pursuits of man. Kasparov’s defeat at the “hands” of Deep Blue indicates that computers, 
within a miniscule sixty years of evolution, can outperform the zenith of biological 
evolution in its crowning achievement of logical decision making.   

Yet, not a single machine plays chess in the same manner as man, being capable 
of little more than brute force attacks on the game. Through experimentation with 
artificial neural networks with various topologies and learning algorithms, it is 
hypothesized that learning can be based on “schemas” found in recorded games.  



Introduction: 
The real question to be asked; can chess really be implemented with ANNs as 

opposed to the traditional approach of exhaustively searching game trees?  
Applied correctly and appropriately designed, artificial neural networks have 

extraordinary potential for solving problems involving generalization, trend recognition, 
and pattern matching. Game play, which often involves non-linear strategies or decision 
making, is a particularly good area to demonstrate the ANN as a way of approximating 
otherwise inexpressible functions [1].  To date, the promise and lofty expectations of this 
artificial intelligence approach have yet to be fully realized, demanding further research. 
Work on complex problem solving, such as that required in classical board games such as 
chess, has been limited, although many of the available research results [1-4] are 
tantalizing. 

Numerous published studies serve as motivation and a starting point for this 
research. Chekkapilla and Fogel, in developing an ANN to play checkers, indicated that 
there is feasibility in teaching ANNs games of some complexity [1,2]. Although chess is 
clearly a leap forward from checkers, it seems a logical next step in the evolution and 
development of the ANN, as chess is one of the most widely studied and researched 
games. A demonstration of strategy in such a game is also recognized as a direct measure 
of logical decision making ability [1]. Chess as an ANN problem is not a new idea; in 
fact, ANNs have already been proven to be highly effective in playing chess endgames, 
although it is ironic that the author also states that chess is too difficult for ANNs to learn 
in its entirety [3]. The “Distributed Chess Project,” when considering the full game of 
chess, reported approximately 75% accuracy in choosing the “proper” move when 
confronted with a chess problem external to the training domain. While not fully 
successful as implemented, the study does appear to indicate that chess schema may be 
learned by ANNs [4].  

The published studies therefore seem to give a mixed opinion of whether a 
solution is possible in this problem. However, three points must be emphasized here. 
Technology has improved exponentially since [3] was published in 1994, which allows 
vastly more complex networks to be implemented. Also, breaking the game down as 
proposed in this project has not, in the author’s knowledge or opinion, been considered or 
researched before. Finally, the success (and failures) of [4] can only be seen as relevant to 
the approach used, which is derivation of ANNs through genetic algorithms. A vast 
training set was apparently not utilized, and external rule control was not applied. 
Considering the facts, proposed improvements, and possible implications of this kind of 
research to the field of artificial intelligence, the project is worth pursuing. 
 
System Description: 

Although mainly a research endeavor, the end goal of this project is to produce a 
system based on artificial neural networks (ANNs) which will play chess (as the dark side 
only) effectively against a human opponent. The dark side is chosen simply because it 
prevents the system from having to make the first move. To meet the objective, research 
will be centered on artificial neural network (ANN) topology specifically for the purpose 
of creating a topology appropriate for complex decision making in a massively 
dimensional problem. Functionality of the system may be broken into three parts: the 
learning mode will be an automated process where the ANNs learn how to play from an 



extensive external database of games; while the playing and advisory modes of operation 
accept user interaction, taking move inputs from the player and providing the move(s) 
chosen by the system. Playing mode returns one move while advisory returns multiple. 

The system will operate in the learning mode prior to playing chess or advising. 
Figure 1 shows the possible modes of operation, along with the interconnection between 
the modules included in each subsystem. The entire system is composed of software 
running on multiple PCs simultaneously, and no additional hardware is to be used.  

No inputs or outputs are specified for the learning mode, which operates in an 
essentially automated process. The playing or advisory modes receive move inputs from 
the player and after evaluation is complete will return the best move(s) chosen by the 
neural network system. Prior to discussing the playing and training functions, it is 
necessary to briefly introduce the modules depicted in figure 1 with their corresponding 
IO functions and give a brief introduction of the two major design paradigms to be 
considered. 
 

 
 
Fig. 1: System block diagram 
 
Input and Output Descriptions: 
 As shown in figure 1, four main components will make up the system; the 
interface module, the ANN module, and the preprocessing and database systems. The 
ANN module is shared by both the learning and the playing/advisory modes. The only 
difference in the output between regular playing mode and advisory mode is that a list of 
“good” moves will be returned in advisory mode, while only one will be returned in play 
mode. Figure 2 displays the connections and IO paths which will comprise the modes of 
operation. This same information is shown graphically in figure 1. Note that this IO plan 



is very high level, and that far more complexity is to be found within the individual 
modules, which themselves will be broken down into components. Two approaches to the 
internal design of the ANN module will be presented, which differ in the way chess is 
broken down for parallel analysis. One paradigm is known as the functional approach, 
where each piece in chess is considered as a unique unit and has a dedicated network. In 
the other approach, known as the geographical paradigm, the piece is ignored and instead 
every possible combination of initial and final positions forming moves is considered a 
unique unit and receives a dedicated network.  
   

Learning mode:    

Module External Input External Output Inter-Modular Input Inter-Modular 
Output 

Game 
Database/ 
Preprocessing  

NA NA NA Game records to 
ANN module 

ANN Module NA NA Game records from 
database/preprocessing NA 

     
Playing/Advisory mode:    

Module External Input External Output Inter-Modular Input Inter-Modular 
Output 

Interface 
Module Player's move ANN's move(s) ANN move(s) choice Board description to 

ANN 

ANN Module NA NA Board description from 
interface 

Move choices to 
interface 

 
Fig. 2: Input/Output descriptions by module 
 
Interface Module: 
 The interface module seen in figure 1 (playing or advisory mode) is an application 
the user interacts with on the PC. It displays a chess board and the piece layout for the 
game, and the user will make their moves on this board. In advisory mode, a list of 
returned neural network moves will be displayed in a text box for the user to examine. In 
playing mode, the computer will make its own moves directly on the board. The interface 
module must have bidirectional communication with the artificial neural network system 
(ANN system) to exchange board position data and move choices. 
 
ANN System: 
 The ANN system is the central focus of the design. It will contain a series of 
neural networks (as many as 1856 in the geographical approach), operating in parallel, 
which are trained to play specific moves in the game, or as specific pieces in the game 
depending on the design paradigm in question. Before use in the playing/advisory modes, 
the ANN system must be trained in the learning mode, where it starts as a randomly 
connected, randomly weighted network. The training takes place in an automated process 
utilizing millions of data samples representing “good” moves in chess. Once trained, the 
ANN system is used by the interface module to play the game. A board position may be 
passed to the system, and a list of suggested moves will be returned. The interface 
decides whether to make one move or to display a list of suggestions based on whether it 
is set to playing mode or advisory mode.  



 
Game Database: 
 The game database is a standalone application called ChessBase 9.0. This 
application allows a massive database of several million saved chess games to be sorted, 
filtered and searched by move. ChessBase 9.0 is used exclusively in the learning mode, at 
the start of the preprocessing stage. All game data must be preprocessed in order to 
convert it from the database format to a format usable for neural network training. Games 
from ChessBase 9.0 are extracted by searching for specific moves or movement by piece, 
which defines the first step in the preprocessing module to be described shortly. Many 
individual sets of games are made, which will then be passed to the remaining 
preprocessing stages. 
 
Data Preprocessing: 
 Data preprocessing begins in the game database described above, and continues 
with a series of applications designed to convert the chosen game data into neural 
network training vectors. The data processing stage converts PGN files (portable game 
notation—a popular algebraic game recording standard) which are extracted from the 
database, to EPD strings (extended position description). EPD files contain a series of 
strings representing the full board position at each move recorded in the PGN file. Figure 
3 shows a sample of PGN format, and figure 4 shows a sample of EPD format. At this 
time a detailed understanding of file content is not required. 
 
1. e4 d6 2. d4 Nf6 3. Nc3 g6 4. Nf3 Bg7 5. Be2 O-O 6. O-O Bg4 7. Be3 Nc6 
8. Qd2 e5 9. d5 Ne7 10. Rad1 Bd7 11. Ne1 Ng4 12. Bxg4 Bxg4 13. f3 Bd7 14. f4 
Bg4 15. Rb1 c6 16. fxe5 dxe5 17. Bc5 cxd5 18. Qg5 dxe4 19. Bxe7 Qd4+ 20. Kh1 
f5 21. Bxf8 Rxf8 22. h3 Bf6 23. Qh6 Bh5 24. Rxf5 gxf5 25. Qxh5 Qf2 26. Rd1 
e3 27. Nd5 Bd8 28. Nd3 Qg3 29. Qf3 Qxf3 30. gxf3 e4 31. Rg1+ Kh8 32. fxe4 
fxe4 33. N3f4 Bh4 34. Rg4 Bf2 35. Kg2 Rf5 36. Ne7 1-0 
 

Fig. 3: Sample of the PGN file standard 
 
rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - pm d4; 
rnbqkbnr/pppppppp/8/8/3P4/8/PPP1PPPP/RNBQKBNR b KQkq d3 pm Nf6; 
rnbqkb1r/pppppppp/5n2/8/3P4/8/PPP1PPPP/RNBQKBNR w KQkq - pm Nf3; 
rnbqkb1r/pppppppp/5n2/8/3P4/5N2/PPP1PPPP/RNBQKB1R b KQkq - pm b6; 
rnbqkb1r/p1pppppp/1p3n2/8/3P4/5N2/PPP1PPPP/RNBQKB1R w KQkq - pm g3; 
rnbqkb1r/p1pppppp/1p3n2/8/3P4/5NP1/PPP1PP1P/RNBQKB1R b KQkq - pm Bb7; 
 
Fig. 4: Sample of the EPD file standard 
 

Of course, neural networks require a numeric input vector for training. It is 
therefore required to convert the EPD stings into floating point input vectors by 
converting the EPD characters to floating point values. A sample geographical training 
vector is shown in figure 5. The output pattern is 1 or -1, corresponding to whether or not 
to make the move specific to the training data set and the neural network. The hope is that 
after learning enough patterns, the neural network will be able to effectively make move 
decisions for data samples which are not contained in the original training set. Training 
vectors for the functional approach will have multiple output patterns, which will be 
clarified shortly. 

 



 
 
Fig. 5: Sample floating point training sample 

It may be possible that training with +1 and -1 only is not the best approach to 
training after some further consideration. Is there more meaning in defining some sort of 
“relative move strength”? Two problems exist here. First of all, formulas to calculate 
relative move strength accurately simply do not exist, even though some versions of them 
are used in commercially available chess programs. No matter how complex they are, 
they are always little more than artificial models of an impossibly complex system. They 
are not going to be correct all of the time. Of course, actually implementing this equation 
is not a trivial task either, as it would have to examine a full game leading up to a certain 
board position for every board position in the training set...that is if an equation could 
even be derived in the first place since many of the better ones are proprietary 
information. Most importantly however, this function would defeat the point of this 
project all along by adding some sort of external “expert knowledge” when the original 
goal was to use ANNs alone. Because of this fact alone, the concept of “move strength” 
will not be pursued further. However, the possibility of adding additional network inputs 
at a future time remains open so long as they are clearly visible on the board or in the 
game. Perhaps piece proximity data, last move made, or some other data could be 
valuable to include in the training vectors and include in the eventual decision making 
process. It may also prove more effective to train with values of +0.9 and -0.9 in order to 
increase learning speed. Now that the main modules have been adequately introduced, it 
is now possible to describe the full functionality of specific modes of operation. 

Playing/Advisory System: 
 The interface module and the ANN system are used in the playing/advisory 
system. Figure 6 describes the operation of this entire system (or functional mode). In 
figure 6, the ANN board processing stage is expanded on the far right to give more 
insight into the ANN system. It is possible to treat the ANN processing as a single 
function as it has a clearly defined input and output, and its inner workings are of no 
consequence to the interface module so long as data is passed back and forth. The 
expanded ANN processing function can be better understood by figure 7, which shows 
the block diagram of the geographical ANN system design. Here, “adaptive resonance” is 
simply a specialized training session held after the initial training to “fine tune” networks 
so they make fewer illegal moves over time. 



The true form of adaptive resonance would make changes to the network during 
training, while in this case, although the data is saved within the playing/advisory mode, 
it is required to go back to the training mode to complete the “adaptive resonance.” Thus, 
while not adhering to the true definition of adaptive resonance, the end result is the same; 
adjustment of weights to differentiate between similar inputs based on observation of a 
logical error. 
 
 

 
 
 
Fig. 6: Playing/advisory system flowchart 
 
 
 
 



 
Fig. 7: Move based ANN system design (geographical design paradigm) 
 
Learning System: 
 The learning system is comprised of the ChessBase 9.0 database, the 
preprocessing software, and the ANN system. It is possible to divide learning into two 
distinct functions: data preprocessing and training.  
 The data preprocessing function is described in figure 8. The database specific 
operations and selections can be considered a unique function, and an expanded view is 
provided at the bottom of figure 8. It is vital that the final output of the preprocessing 
stage is a set of training vectors specifically created for each possible legal move in chess, 
following the data format displayed in figure 5. A great deal of research and effort has 
been devoted to the preprocessing stage to develop it to this point, as the functionality 
required does not exist in any known software. It is required to use numerous applications 
to convert between formats, the names of which are displayed in the appropriate 
functional locations in figure 8 below. In some circumstances, another application may be 
required to break large PGN files into small files prior to running EPD_Position.exe. 
However this is not shown in figure 8 as it is in place only to improve speed.   
 



 
 
Fig. 8: Data preprocessing subsystem flowchart 
 
 Training takes place after the data preprocessing is complete. The end result of 
preprocessing is a set of “pattern files” which are loaded by the Stuttgart Neural Network 
Simulator (SNNS) to perform the training. Each network has its own pattern set, and 
training takes place one network at a time. Each training pattern is once again in the 
format described in figure 5. Training is performed entirely by SNNS, so the 
mathematical details of learning will not be described in this document. It is possible to 
instead treat the actual learning as a self contained process. Figure 9 describes the 
training process. 
 
 

 
 
Fig. 9: Training process flowchart, using Stuttgart Neural Network Simulator 
 
 Training will actually be repeated numerous times for each network. Each time 
the entire pattern set is trained is known as a cycle. Approximately 100 cycles will be 
processed for each network, which is subject to change based on observed training 
effectiveness. 
 
Structure of the ANN Modules: 
 Now that all components, functions and design paradigms have been introduced, 
the internal structure of the ANN module will be discussed in greater detail. Figure 1 
depicts the ANN module in both the learning and playing/advisory mode, and it must be 
emphasized that the design of this component is the primary focus of the project’s 
research. Presently, two major design paradigms are being examined. 

The first will involve a geographical breakdown of all possible moves in the game 
based on the starting position i and the final position f. An entire game g of n moves may 
be expressed as a set of board positions bi where i is the move number from 0 to n. Of 
course, each biЄg has a set of possible legal moves based on the piece p located at all i 
positions held by the game participant’s side. Therefore, it is possible to define the set of 



legal moves as mif=f(bi) since complete knowledge of p, i, and f may be obtained from 
any bi in addition to the rules of chess. For now it is required to consider the castling 
moves to be special cases, as they involve more than 1 piece. If considering a whole 
game of n moves, then all legal moves made throughout may be expressed 

as ∑
=

 )(=
n

i
ibfL

0
All legal moves in chess may therefore be found as ∑

∞
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 )=
0
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i

iLM . It is not 

difficult to determine mif through simple logic for any biЄg. M is finite, obviously having 
a value less than 64x63 moves.  This idea is fundamental to justifying the design in figure 
7. In this design, it is required to create an individual ANN structure for all moves t, tЄM. 
Thus, each ANN will be trained to make a ‘yes’ or ‘no’ decision for its own move t based 
only on bi. It is possible that some networks may say ‘yes’ for making a move, even if the 
move is illegal based on the rules of chess for the given bi ,even though mifЄM! For 
example, the move for the left black rook may say ‘yes’ to move from square D4 to D6 
even though square D5 is held by an enemy. D4 to D5 may also report a ‘yes’ decision, 
so how will an action be chosen? This is where knowledge of mif as defined above for the 
specific board position is applied. It is possible to deactivate the ANNs which want to 
make illegal moves. Once this is done, the ANN with the highest output level (from a 
hyperbolic tangent function, range +/- 1) is chosen as the move to make.  

 

 
 

Over time, it should in theory be possible to modify the ANNs so they do not 
make these illegal moves anymore by using an implementation of adaptive resonance. In 
short, the input bi will be saved in a file along with a ‘no’ output for any illegal moves. A 
special training session will then be held to improve the network. 

Fig. 10: Functionally Derived ANN System Design 



    The second approach initially proposed is to break the game of chess apart by 
piece, thereby allowing a more “functional” approach to the same problem. It is required 
to define 16 networks which represent all pieces for the dark side. Each network will 

have m outputs, which are defined by ∑
∞
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 )=
0
(

i
ilm where ∑
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slightly different from how L was defined above, as it must have emphasis placed on p 
(the piece) in addition to bi. Once again n is the number of turns in a single game. There 
will still be the same number of outputs in total (M). Outputs will still be deactivated in 
the same fashion as described above. Adaptive resonance will still be applied to improve 
the network decisions over time. Figure 10 shows a block diagram of the functionally 
derived approach.  

In general, both design approaches may be viewed as parallel approaches to 
complex problem solving. Many benefits are achieved in a parallel approach, including 
shortened training time and simplified internal network design. Although it is not known 
in advance how large the networks must be for either approach, it seems that the 
networks for the geographical approach will be significantly smaller (in terms of node 
count) than those in the functional design, simply because they have only one output, thus 
the simulated function is assumed to be less complex, thereby requiring fewer nodes to 
achieve accurate approximation results. It is expected that all networks will be the same 
size for the geographic approach, although it may also seem valid that the moves 
involving edge positions as initial positions will not need as many nodes as they simply 
do not have as many legal moves to make, while moves in the center could require a 
greater number of nodes. Unfortunately, theory does not exist to accurately predict ANN 
size for problems such as this, so it will be left largely to trial and error. Functional 
networks clearly will have varying sizes, simply because queen movement, for example, 
is more complex than that of the pawn.  
 Another benefit of the parallel approach is that learning is anticipated to be less 
destructive than it would be for a single network having to process all moves. In such a 
situation, involving a highly dimensional problem and dataset, adjusting the weights and 
thresholds to make one output converge could cause divergence of the other outputs. Not 
only would learning take much longer, but it would seem that accurate results may be far 
more difficult to come by.  

Either approach will be trained using the same dataset, which is a database of 
several million recorded games of varying skill levels. An interesting characteristic is that 
the level of play the ANN is capable of may be related to the skill level of the games used 
in training. If so, then it would be possible to pre-specify the quality of performance 
when training the network! Although the initial goal is to simply train the system to play 
without regard to skill level, this could be a very interesting area to look into if time and 
success permits. 
 
 
Progress and Current Direction: 

A major focus over the summer of 2004 was to develop a generic and versatile 
ANN framework, including all processing, learning, and management functionality. 
Some time has also been spent determining the best way to store training records, 
including the data representation, as well as normalization and standardization 



considerations. Although work on the ANN platform is estimated to be roughly 80% 
complete at this point, the choice was made recently to discontinue work on the ANN 
framework and instead utilize the existing Stuttgart Neural Network Simulator (SNNS) 
with Java interface [5]. Work is now focusing on network topology design, network size 
considerations, and integrating the rule logic with the ANN components. 
 It is required to have some form of data processing in addition to the ChessBase 
9.0 software being utilized for the training data. The processing function will take the 
games stored in PGN files (portable game notation, a common algebraic chess notation 
standard) and convert them to extended position description (EPD) format. The result for 
one game would be a series of strings with one string for each board position in the game. 
These strings are then to be parsed by another application which will convert them into a 
series of 64 signed floating point values corresponding to the traditional weights given to 
chess pieces. The value of the move to be made will be concatenated with the resulting 
vector to produce a training record. Once a set of training records is generated, they will 
be presented randomly to the ANNs for training.  
 The networks themselves will be generated to work with SNNS, as will the 
training records. Multiple PCs will process the training files in the learning stage, and 
human supervision will not be required. It is expected that learning will take hours to a 
couple of days for the entire system. Rule logic is not considered in the initial training 
process. 

Currently, the approach being most seriously considered is to create all networks 
the same size, and large enough to deal with the largest of the datasets (which is still 
based on estimation). Then, all networks will be initialized to have perhaps 10% 
connectivity (they are currently considered to be feed forward networks of common layer 
size). The idea is that lower connectivity, as it trains faster, will provide the same end 
result as simply having fewer nodes. By observing the output error plot it is possible to 
determine when the maximum amount of training has taken place, as the error graph 
should begin to rise again after having reached some minimum value. In the cases of the 
datasets containing very large sample counts, it is expected this will happen far before all 
samples have been trained. Training with more samples is expected to give a better 
network in the end, so it is not desirable to simply stop “halfway through” the data, for 
example. Because the overly trained network only has 10% connectivity, it is possible to 
easily add more connections through editing the .net file. New connections will be 
assigned weights of zero. In doing this, the new connections have absolutely no impact in 
the network at this point. However, the storage capacity of the network will have been 
increased, and new patterns should now be “learned” through manipulation of the old 
weights, but more importantly the newly added connections will be utilized as well. Thus, 
the process is to be repeated until a given dataset has been adequately trained.  
 The networks themselves are currently being considered with hyperbolic tangent 
activation functions, using classical back propagation learning. It may become clear in 
the near future that another learning style is more appropriate (perhaps back propagation 
with momentum, etc), but for now as many simplifications as possible are being sought, 
so learning will be kept simple for the time being. Positive elements on the input vectors 
will be scaled to the dark side (ANN) while negative elements will be scaled to the light 
(human) player. A zero means no piece is present on the square in question. The outputs 
of the ANN  (tanh) are to be considered ‘yes’ if they are positive, and ‘no’ if they are 



negative. More positive moves (approaching +1.0) are the ones most likely to be made, 
while the most negative (-1.0) are illegal or very poor can never be made. As research 
and design continues, it will doubtlessly become apparent that numerous additions and 
modifications to the preliminary concepts will be required.  
 Currently, research is also being undertaken in the area of radial basis function 
networks (RBFNs) as a possible alternative approach to the feed forward networks 
currently being pursued. RBFNs are particularly promising for this project as they are 
particularly good at pattern classification problems if the problem can benefit from the 
fact that they make local approximation (or classifications) in each node (this is 
somewhat intuitive by the activation function’s resemblance to a band pass filter rather 
than a low or high pass characteristic seen in typical feed forward activation functions). 
They also perform function approximation. SNNS is able to work with RBFN networks, 
so it should be possible to compare the performance of this design approach to that of the 
original approach. RBFNs differ greatly from the typical feed forward approach to neural 
networks because each node performs a somewhat unique “input summing” operation. 
Instead of merely adding the inputs multiplied by their respective weights, the RBFN 
nodes determine the input vector’s “distance” from the weight vector via the dot product. 
If two vectors have “zero” distance from one another, the output is maximum as the 
Gaussian distribution function has the maximum value at zero. Figure 11 shows the 
RBFN node and the Gaussian distribution activation function. 
 If the decision is made to utilize RBFNs instead of the current approach, 
numerous changes to network topology will be required. Instead of having numerous feed 
forward layers, the RBFN will have only an input layer, a single layer of RBFN nodes, 
and a linear summing layer. Connectivity in this case would likely be full rather than 
partial for the simple reason that hidden nodes will never have the opportunity to 
“communicate” as they do in the feed forward design as each node is connected straight 
to the output layer and never to another hidden node. 
 

        
Fig. 11: RBFN node and activation function 
 

A separate application must also be created for the interface to be used in the 
playing mode. The application should present the user with a graphical view of the board, 
and be able to read the SNNS files and process the network after a new input vector is 
generated when the user makes a move. The resulting move must then be shown on the 
board.  



 
 
 
 
 
 
 

Appendixes: 



 
Schedule and timeline: 
 The timeline for this project is shown in figure 12. Work began in May 2004 and 
is scheduled to be completed in the beginning of May, 2005. Thus far, work is on 
schedule although the data extraction is taking longer than anticipated. There is some 
danger that it could be delayed depending on the time needed to extract the center moves, 
which do take a great deal longer than the edge moves. However, this step is the slowest 
and most time consuming task in the project and after it is completed everything will be 
back on schedule. 
 

Date Goals and progress 
May-04 Decide overall purpose of the project 
Jun-04 Work on neural network framework 
Jul-04 Work on neural network framework 
Aug-04 Redefine project goals and choose to use SNNS instead of new framework 
Sep-04 Data processing functions designed and Chessbase 9.0 identified as database software 

21-Oct-04 Network generator program is created and data processing defined further 
28-Oct-04 Order ChessBase 9.0 and evaluate training speeds to estimate needed CPU time 
4-Nov-04 Argonne presentation and ChessBase 9.0 arrives. Begin data processing (Extraction). 

11-Nov-04 Extract Data. Begin investigating possible network sizes and connectionisms. 
18-Nov-04 Extract Data. Begin investigating radial basis function networks and "error" determination. 
25-Nov-04 Extract Data, work on proposal 
2-Dec-04 Extract Data, Proposal presentation 
9-Dec-04 Extract Data and begin to look at feed forward and radial basis comparison 
16-Dec-04 Extract Data and continue to look at feed forward and radial basis comparison 
23-Dec-04 Extract Data and work on rule logic and ANN integration module 
30-Dec-04 Process Data (PGN to EPD). Journal paper? 
6-Jan-04 Process Data (EPD to PGN). Create and initialize all networks. Journal paper? 
13-Jan-04 Design a process for training and test this on 4 or 5 machines. Journal Paper? 
20-Jan-04 Train on maximum number of PCs, evaluate performance 
27-Jan-04 Make changes to topology, data format, etc. as needed. 
3-Feb-04 Train on maximum number of PCs, evaluate performance 

10-Feb-04 Make changes to topology, data format, etc. as needed. 
17-Feb-04 Train on maximum number of PCs, evaluate performance 
24-Feb-04 Make changes to topology, data format, etc. as needed. 
3-Mar-04 Train on maximum number of PCs, evaluate performance 

10-Mar-04 Make changes to topology, data format, etc. as needed. 
17-Mar-04 Train on maximum number of PCs, evaluate performance 
24-Mar-04 Make changes to topology, data format, etc. as needed. 
31-Mar-04 Integrate all remaining modules (final interface). Test system against human players. 
7-Apr-04 Continue testing system. Evaluate rating if possible.  
14-Apr-04 Begin preparing for final presentations and expo + finish loose ends 
21-Apr-04 Begin preparing for final presentations and expo + finish loose ends 
28-Apr-04 Begin preparing for final presentations and expo + finish loose ends 
5-May-04 Project Complete 

 
Fig. 12: Proposed schedule and timeline 
 



Parts and prices: 
 
ChessBase 9.0 Database: $389.00 (ordered and in use) 
 
DVDRs (roughly 20 will be needed to backup data): $20.00 
 
160 GB external hard disk (for local data storage): $150.00 (personally purchased) 
 
CPU Time (Off-hour access to laboratories will be required for training on as many PCs 
as possible. A full estimate of requirements will follow shortly.) 
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